20 research outputs found

    All-condition pulse detection using a magnetic sensor

    Full text link
    A plethora of wearable devices have been developed or commercialized for continuous non-invasive monitoring of physiological signals that are crucial for preventive care and management of chronic conditions. However, most of these devices are either sensitive to skin conditions or its interface with the skin due to the requirement that the external stimuli such as light or electrical excitation must penetrate the skin to detect the pulse. This often results in large motion artefacts and unsuitability for certain skin conditions. Here, we demonstrate a simple fingertip-type device which can detect clear pulse signals under all conditions, including fingers covered by opaque substances such as a plaster or nail polish, or fingers immersed in liquid. The device has a very simple structure, consisting of only a pair of magnets and a magnetic sensor. We show through both experiments and simulations that the detected pulsation signals correspond directly to the magnet vibrations caused by blood circulation, and therefore, in addition to heartrate detection, the proposed device can also be potentially used for blood pressure measurement

    Unifying Two-Stream Encoders with Transformers for Cross-Modal Retrieval

    Full text link
    Most existing cross-modal retrieval methods employ two-stream encoders with different architectures for images and texts, \textit{e.g.}, CNN for images and RNN/Transformer for texts. Such discrepancy in architectures may induce different semantic distribution spaces and limit the interactions between images and texts, and further result in inferior alignment between images and texts. To fill this research gap, inspired by recent advances of Transformers in vision tasks, we propose to unify the encoder architectures with Transformers for both modalities. Specifically, we design a cross-modal retrieval framework purely based on two-stream Transformers, dubbed \textbf{Hierarchical Alignment Transformers (HAT)}, which consists of an image Transformer, a text Transformer, and a hierarchical alignment module. With such identical architectures, the encoders could produce representations with more similar characteristics for images and texts, and make the interactions and alignments between them much easier. Besides, to leverage the rich semantics, we devise a hierarchical alignment scheme to explore multi-level correspondences of different layers between images and texts. To evaluate the effectiveness of the proposed HAT, we conduct extensive experiments on two benchmark datasets, MSCOCO and Flickr30K. Experimental results demonstrate that HAT outperforms SOTA baselines by a large margin. Specifically, on two key tasks, \textit{i.e.}, image-to-text and text-to-image retrieval, HAT achieves 7.6\% and 16.7\% relative score improvement of Recall@1 on MSCOCO, and 4.4\% and 11.6\% on Flickr30k respectively. The code is available at \url{https://github.com/LuminosityX/HAT}.Comment: Accepted at ACM Multimedia 202

    Aqueous-phase reactive species formed by fine particulate matter from remote forests and polluted urban air

    Get PDF
    In the aqueous phase, fine particulate matter can form reactive species (RS) that influence the aging, properties, and health effects of atmospheric aerosols. In this study, we explore the RS yields of aerosol samples from a remote forest (Hyytiala, Finland) and polluted urban locations (Mainz, Germany; Beijing, China), and we relate the RS yields to different chemical constituents and reaction mechanisms. Ultra-high-resolution mass spectrometry was used to characterize organic aerosol composition, electron paramagnetic resonance (EPR) spectroscopy with a spin-trapping technique was applied to determine the concentrations of (OH)-O-center dot, O-2(center dot-), and carbon-or oxygen-centered organic radicals, and a fluorometric assay was used to quantify H2O2. The aqueous H2O2-forming potential per mass unit of ambient PM2.5 (particle diameter < 2.5 mu m) was roughly the same for all investigated samples, whereas the mass-specific yields of radicals were lower for sampling sites with higher concentrations of PM2.5. The abundances of water-soluble transition metals and aromatics in ambient PM2.5 were positively correlated with the relative fraction of (OH)-O-center dot and negatively correlated with the relative fraction of carbon-centered radicals. In contrast, highly oxygenated organic molecules (HOM) were positively correlated with the relative fraction of carbon-centered radicals and negatively correlated with the relative fraction of (OH)-O-center dot. Moreover, we found that the relative fractions of different types of radicals formed by ambient PM2.5 were comparable to surrogate mixtures comprising transition metal ions, organic hydroperoxide, H2O2, and humic or fulvic acids. The interplay of transition metal ions (e.g., iron and copper ions), highly oxidized organic molecules (e.g., hydroperoxides), and complexing or scavenging agents (e.g., humic or fulvic acids) leads to nonlinear concentration dependencies in aqueous-phase RS production. A strong dependence on chemical composition was also observed for the aqueous-phase radical yields of laboratory-generated secondary organic aerosols (SOA) from precursor mixtures of naphthalene and beta-pinene. Our findings show how the composition of PM2.5 can influence the amount and nature of aqueous-phase RS, which may explain differences in the chemical reactivity and health effects of particulate matter in clean and polluted air.Peer reviewe

    Distance-Scalar Disturbance Observer-Based Parallel Approaching Guidance Using Finite-Time Prescribed Performance

    No full text
    In this paper, to make an interceptor intercept a maneuvering target, a parallel approaching guidance law is developed. In order to estimate the target maneuver more accurately and reduce its influence on the guidance accuracy, a distance-scalar disturbance observer is employed. Specifically, the estimation accuracy of the designed observer is not affected by the relative distance. Finite-time prescribed performance is employed to ensure that the line-of-sight angular rate is capable of converging to a predetermined small region within the specified finite time. All signals of the interception system can guarantee an ultimately uniformly boundedness, as proven by Lyapunov stability theory. Finally, the function of the parallel approaching guidance law is demonstrated using numerical simulation

    Classifying Crime Types using Judgment Documents from Social Media

    Full text link
    The task of determining crime types based on criminal behavior facts has become a very important and meaningful task in social science. But the problem facing the field now is that the data samples themselves are unevenly distributed, due to the nature of the crime itself. At the same time, data sets in the judicial field are less publicly available, and it is not practical to produce large data sets for direct training. This article proposes a new training model to solve this problem through NLP processing methods. We first propose a Crime Fact Data Preprocessing Module (CFDPM), which can balance the defects of uneven data set distribution by generating new samples. Then we use a large open source dataset (CAIL-big) as our pretraining dataset and a small dataset collected by ourselves for Fine-tuning, giving it good generalization ability to unfamiliar small datasets. At the same time, we use the improved Bert model with dynamic masking to improve the model. Experiments show that the proposed method achieves state-of-the-art results on the present dataset. At the same time, the effectiveness of module CFDPM is proved by experiments. This article provides a valuable methodology contribution for classifying social science texts such as criminal behaviors. Extensive experiments on public benchmarks show that the proposed method achieves new state-of-the-art results.Comment: 5 page

    Chiral Quasi-Bound States in the Continuum of a Dielectric Metasurface for Optical Monitoring and Temperature Sensing

    No full text
    Chiral BIC can reach ultrahigh quality factors (Q-factor) based on its asymmetry, with broken mirror symmetries and in-plane inversion. Only by in-plane structural perturbation can chiral quasi-BIC (q-BIC) appear, so it is much more realizable and reasonable for the manufacturers in practical productions and fabrications considering the technology and means that are available. In this paper, we design a new dielectric metasurface employing H-shaped silica meta-atoms in the lattice, which is symmetrical in structure, obtaining chiral BIC with ultrahigh Q-factor (exceeding 105). In this process, we change the length of the limbs of the structure to observe the specific BICs. Previous scholars have focused on near-infrared-wavelength bands, while we concentrate on the terahertz wavelength band (0.8–1 THz). We found that there is more than one BIC, thus realizing multiple BICs in the same structure; all of them exhibit excellent circular dichroism (CD) (the maximum value of CD is up to 0.8127) for reflectance and transmittance, which provides significant and unique guidance for the design of multi-sensors. Meanwhile, we performed temperature sensing with chiral BIC; the sensitivity for temperature sensing can reach 13.5 nm/°C, which exhibits high accuracy in measuring temperature. As a consequence, the result proposed in this study will make some contributions to advanced optical imaging, chiral sensors with high frequency and spectral resolution, optical monitoring of environmental water quality, multiple sensors, temperature sensing, biosensing, substance inspection and ambient monitoring and other relevant optical applications

    Beryl Mineralogy and Fluid Inclusion Constraints on the Be Enrichment in the Dakalasu No.1 Pegmatite, Altai, NW China

    No full text
    The Dakalasu No.1 pegmatitic rare-element deposit is a representative of Be-Nb-Ta pegmatites in Altai, Xinjiang, China. Beryl is the most important beryllium-carrying mineral in Dakalasu No.1 pegmatite. To constrain the concentration mechanism of Be, we conducted a study of the textural relationships and chemical compositions (major and trace elements) of beryl, along with microthermometry and Raman spectroscopy on beryl-hosted fluid inclusions. Two generations of beryl were recognized. The early beryl I was formed in the magmatic stage, whereas the late beryl IIa and IIb were formed in the magmatic-hydrothermal stage. Lithium and Cs contents increased from beryl I, beryl IIa, to beryl IIb, whereas Mg and Rb contents decreased. Scandium, V, and Ga contents of beryl IIa are similar to beryl IIb, but different in beryl I. Titanium is enriched in beryl IIa. The high FeO contents and Na/Cs ratios of beryl (I, IIa, and IIb) reveal the low degree of differentiation evolution of the Dakalasu No.1 pegmatite. Two types of melt inclusions and four types of fluid inclusions were identified in beryl IIa, IIb, and associated quartz. The microthermometry results indicated that beryl II is formed at 500 &deg;C&ndash;700 &deg;C, and 200 MPa&ndash;300 MPa. The Dakalasu No.1 pegmatite melt is enriched in volatiles, such as B, F, and CO2, evidenced by a large amount of tourmaline in the wall zone, the occurrence of a variety of tiny cryolite (Na3AlF6) inclusions, and CO2-rich fluid inclusions in beryl IIa. The enrichment mechanism of Be may be related to the crystallization of beryl at highly undercooled states of melt, and melt&ndash;melt&ndash;fluid immiscibility during the evolution and differentiation of the melt

    Beryl Mineralogy and Fluid Inclusion Constraints on the Be Enrichment in the Dakalasu No.1 Pegmatite, Altai, NW China

    No full text
    The Dakalasu No.1 pegmatitic rare-element deposit is a representative of Be-Nb-Ta pegmatites in Altai, Xinjiang, China. Beryl is the most important beryllium-carrying mineral in Dakalasu No.1 pegmatite. To constrain the concentration mechanism of Be, we conducted a study of the textural relationships and chemical compositions (major and trace elements) of beryl, along with microthermometry and Raman spectroscopy on beryl-hosted fluid inclusions. Two generations of beryl were recognized. The early beryl I was formed in the magmatic stage, whereas the late beryl IIa and IIb were formed in the magmatic-hydrothermal stage. Lithium and Cs contents increased from beryl I, beryl IIa, to beryl IIb, whereas Mg and Rb contents decreased. Scandium, V, and Ga contents of beryl IIa are similar to beryl IIb, but different in beryl I. Titanium is enriched in beryl IIa. The high FeO contents and Na/Cs ratios of beryl (I, IIa, and IIb) reveal the low degree of differentiation evolution of the Dakalasu No.1 pegmatite. Two types of melt inclusions and four types of fluid inclusions were identified in beryl IIa, IIb, and associated quartz. The microthermometry results indicated that beryl II is formed at 500 °C–700 °C, and 200 MPa–300 MPa. The Dakalasu No.1 pegmatite melt is enriched in volatiles, such as B, F, and CO2, evidenced by a large amount of tourmaline in the wall zone, the occurrence of a variety of tiny cryolite (Na3AlF6) inclusions, and CO2-rich fluid inclusions in beryl IIa. The enrichment mechanism of Be may be related to the crystallization of beryl at highly undercooled states of melt, and melt–melt–fluid immiscibility during the evolution and differentiation of the melt
    corecore